Worked Examples and Exercisesin
OpenBUGS

These notes are to be used in conjunction with the workshop notes

Contents
Fitting simple occupancy models with OpenBUGS. ... 3
EXBICISE . et e e e e e e e et e e e et e e e e 7

Defining a model with covariates

Fitting smple occupancy models with OpenBUGS.

Below is code that can be used to fit a simple occupancy rwthet blue-ridge salamander
data using OpenBUGS (an open-source version of WinBUGSnthedmbers are not part
of the actual code). The code is in the OpenBUGS foldeligedwvith the workshop
materials. OpenBUGS is software that has been prim@deNgloped for fitting models using
the Bayesian approach to statistical inference, haxtpéres prior distributions to be defined
for all model parameters, with the output in the form of (exipnate) posterior distributions.
Observations are specified as random variables from scimedi@robability distribution,
and latent (unobserved) random variables can also be defiaegrtilar manner.

1 model (psi(.)p(Day)) {

2 for (i in 1:39) {

3 z[ii] ~ dbern(psi)

4: z1Jii] <- z[ii]+1

5: for (jj in 1:5) {

6: h(ii, jj] ~ dbern(p[z1[ii], jj])
7

8

9

}
; ### define prior distributions
10: psi ~ dunif(0,1)
11: for (jj in 1:5) {
12: p[1,jj]<-0
13: p[2, jj] ~ dunif(0,1)
14: }
15: }

The OpenBUGS syntax requires that we define a model which indbhades definition of
what probability distribution observations and latent random variabéedrawn from, and
the prior distribution for any parameters.

Our OpenBUGS code must therefore begin on line 1 with #tersent ‘model {!, and ends

on line 15 with a corresponding bracket to close the model statefmmediately following
the word ‘model’ you can specify an optional model name innplaeses, as we have done so
here.

The for loop on line 2 (and closes on line 8), is going to cyeddllowing code through
each of the 39 transects for which we have data, where ¢tamse indexed by the term ‘ii’.

Line 3 is where we define whether or not each site ised. z[ii] is the quantiy of interest,
and in this case it is a binary valued or Bernoulli (0 oaf@rit random variable. It is latent in
the sense that we cannot observe this directly because of éctpdefection. ‘~' is used to
denote that the quantity on its left-hand side is a randomblefiam the distribution on its
right-hand side. And ‘dbern(psi)’ indicates that the distributiobe used is the Bernoulli
with probability of a 1 (i.e., presence) equal to psi (thee,probability of occurrence).

There are a few different ways in which this same modetdogiffit within OpenBUGS, and
this is of the form | currently favour; for an alternative appiosee page XXXX in
MacKenzie et al. (2006). Line 4 is simply there as a m&ahslp with indexing. z1[ii] is a
new quantity we’re defining, and that it's equal to theugadf z[ii] + 1 (‘<-‘ is the

assignment operator in OpenBUGS and is equivalent to ‘=").eftwey, if z[ii] is O (transect
unoccupied) then z1[ii] is 1, and if z[ii] is 1 (transect ocedlpithen z1[ii] is 2.

Line 5 contains a second for loop, which closes on line 7wiifidie used to cycle through
each survey conducted at each transect. In this examplember® surveys of each site, and
the index is jj.

The actual detection-nondetection data that was collectid ifield is defined elsewhere in
a 2-dimensional matrix ‘h’. In line 7 we are defining thatdleéection-nondection data is
again a Bernoulli random variable, and the probability of detgdttie species is p[z1]ii],jj].
Now recall that z1[ii] will either have the value of 12)rso depending on whether the
transect is estimated to be unoccupied or occupied, the prtpabiietection in that survey
will be the jf" value from either the first or second row of p respegtiieéeking down to
lines 12 and 13, the probability of detection will thereforé liiethe species is absent, or
something else if the species is present.

Line 9 is simply a comment line to indicate that the foitaycode is where the prior
distributions for our parameters are defined. Anything on ddil@ving a single ‘#' is
regarded as a comment.

On line 10 we are defining that our prior distribution for psi imiform distribution bounded
by the values of 0 and 1. That is, it could be any valuedst\@ and 1, and all values are
equally likely.

As we are assuming that detection probability is day-spegitftis model, we must define a
prior distribution for each of our 5 p’s, hence to for loop on lifhe

Line 12 is one of the important aspects of this code. Tsertiw of p is the probability of
detection given a transect is unoccupied. By definition this thastfore be 0 assuming no
misidentification of the species. Then in line 13, & thansect is occupied, the prior
distribution for p is again a uniform (0,1) distribution.

To run the model, double click on the word ‘model’ in line 1 dmitomes highlighted, then
hit theCheck M odel button on the Specifications Tool window. In the bottom-left coofier
the main OpenBUGS window a message should appear ‘model istgyaita correct’. If
not, then carefully recheck your code.

Next we need to load the detection-nondection data. Within Qp&’B open the file
‘Salamander Data.odc’ which can be found within the OpenBUGefalupplied in the
workshop materials. This data is in a similar format to tisatl in PRESENCE with the data
from each transect stored in a separate row, and theediffeurveys in separate columns.
The first row in the data file defines which columniué data file corresponds to which
vector in the data matrix. ‘h[,1]’ indicates that the cep@nding column in the data file is the
first column of the 2-d matrix h. The data file must déertinated with the statement ‘END’,
followed by a hard-return. There are other formats thatdoelused to read data into
OpenBUGS, check its documentation in the help menu forisleface you have opened the
file, make sure it is the active window then return toSpecification Tool window and hit
Load Data. The message in the bottom-left corner should now changatloaded'.

Following this, change the number of chains to 2Chitnpile thenGen Inits. The model
should successfully compile then generate initial valuedifanenowns. Here, the unknown
values are the parameter values for psi and p, but alsasthis is not observed data.

You must specify which unknowns OpenBUGS is to store for valurdm each iteration of
the MCMC procedure, i.e., from each sample from the poswistibution. Open the
Sample Monitor Tool window (found in the Inference menu) and specify that you wiich t
store psi, p and z (hittinggt after entering the name of each quantity).

Finally open théJpdate Tool window (from the Models menu), specify to run 10 updates
then hit the ‘update’ button. Return to tBample M onitor Tool window, select ‘psi’ from
the drop-down list box, and select the ‘history’ button. This should peoaystot similar to
the one below. Each coloured line represents a chain of valupsi that have been stored
by OpenBUGS.

psi
0204050607

iteration

Return to théJpdate Tool window and run a further 1,000 updates, then again examine the
history for psi. Note that the 2 chains regularly cross on¢har and go through a similar
range of values. This property is knowmdiging, and is what you want to see in the output.
If the chains do not mix, that indicates that the chains in t6&8 procedure have not
converged. For more complicated models often it will take a numbéteadtions before the
chains will have converged, and this information should be iedgplus a few more
iterations just to be safe) and is known ashilr@-in period.

psi
0204060810

I|||' I'"IJ' |F I" I'l i iluliu-,ll II|I | i I‘i'.u-l'.l 'l Il|_,'4_'| [nnllhill |I.. '.|.'|

0 S00 1000
iteration

Run an additional 20,000 iterations and then we’ll explore the owligagrding the first
1,010 iterations as the burn-in period. On$ample Monitor Tool, change the number in
the text box labelled ‘beg’ from 1 to 1,011 to set the bunpeirod, then select psi and hit the
‘stats’ button. You should similar results to below being digda with most of the
summaries for the (approximate) posterior distribution beingeselanatory. One exception
is likely to be the Monte Carlo Error, which is an estenaitthe standard error to indicate

how precisely the mean of the posterior distribution has &pproximated given the number
of iterations. It has been recommended this value should bthkas 5% of the reported
standard deviation. If its not then further iterations shouldibeThe percentiles can be used
to form credible intervals (Bayesian equivalents of confidemeevals), e.g., here we could
take the 2.8 and 97.5 percentiles to give a credible interval of (0.37, 0.79).

Standard Deviation Percentiles [-—I[E|r§|

: mean d MC_error val2.5pc median al97.5pc start sample 2

psi 048623 0.10s7 0.00112 03726 05564 n.ragz 1011 40000 .
A

Monte Carlo Error

A plot of the posterior distribution can be generated by setetdensity’ from theSample
Monitor Tool. Next, explore the results for p noting that we do not gefary(1,jj] as we’d
specified these values to be fixed at zero. Finally, bumthe results for z, the unobserved
variable associated with the presence and absence of satamguattially presented below).
Essentially the mean of z takes on 2 values,<1 @495, and is indicating the probability of
occurrence given the particular detection history at eacisect (and the model). Where the
species was detected at least once, the mean of lzewill(it has to have been occupied), at
all other transects salamanders where never detected, ymuid expect the probability of
occurrence given the nondetection to be lower than the estifoates.

Eﬂ Mode statistics EJ [E| §|

mean s MC_error val2.5pc median val97.5pc start sample
1] 1.0 n.a 3A36E-131.0 1.0 1.0 1011 40000
2] 1.0 n.a 3A36E-131.0 1.0 1.0 1011 40000
Z[3] 1.0 n.a 3A36E-131.0 1.0 1.0 1011 40000
4] 1.0 n.a 3.836E-131.0 1.0 1.0 1011 40000
9] 1.0 n.a 3.836E-131.0 1.0 1.0 1011 40000
Z[6] 1.0 n.a 3.836E-131.0 1.0 1.0 1011 40000
z[7] 1.0 n.a 3.536E-131.0 1.0 1.0 1011 40000
z[8] 1.0 n.a 3.536E-131.0 1.0 1.0 1011 40000
z[9] 1.0 n.a 3.536E-131.0 1.0 1.0 1011 40000
Z[10] 1.0 n.a 3.536E-131.0 1.0 1.0 1011 40000
2Z[11] 1.0 n.a 3.A36E-131.0 1.0 1.0 1011 40000
Z[12] 1.0 n.a 3A36E-131.0 1.0 1.0 1011 40000
Z[13] 1.0 n.a 3A36E-131.0 1.0 1.0 1011 40000
Z[14] 1.0 n.a 3A36E-131.0 1.0 1.0 1011 40000
Z[149] 01958 0.3968 0002403 0.0 0.a 1.0 1011 40000
Z[16] 01916 0.3936 0002458 0.0 0.a 1.0 1011 40000
7] 01966 03974 0002455 0.0 0.a 1.0 1011 40000
Z[18] 01958 0.39649 0.002509 0.0 0.o 1.0 1011 40000
Z[149] 014 0.3923 0.002598 0.0 0.0 1.0 1011 40000
Z[20] 01914 0.3938 0002438 0.0 0.0 1.0 1011 40000
Z[21] 01951 03962 0002572 0.0 0.0 1.0 1011 40000
Z[22] 01934 0.3495 0002736 0.0 0.0 1.0 1011 40000
Z[23] 01944 0.3957 0002544 0.0 0.0 1.0 1011 40000
Z[24] 01925 0.3943 0.002397 0.0 0.0 1.0 1011 40000 ¥,

Exercise

Modify the code to fit models where; fp)s the same for all surveys; and@k the same for
the first 2 surveys, and then constant for the last 3 ssirbey with a different value.

An Alternative Approach

There is an alternative method for defining the occupancy Inmo@enBUGS that makes
generalising the approach relatively straight forward. Rabi@ defining z as a Bernoulli
random variable, we could define it as a categorical Varihlat can take 1 of 2 possible
values (later we can generalise it to more than 2 val&asther, we need to redefine our
observations as well. For simplicity, we’ll just add Eterything so a 1 now represents
absence and non-detection, and 2 indicates species presdrasection. Using this
approach, the code for the salamander example becomes.

1 model (psi(.)p(Day)) {

2 for (i in 1:39) {

3 z[ii] ~ dcat(phif])

4. for (jj in 1:5) {

S h[ii, jj] ~ dcat(p[z[il], ji])

6: }

4 }

8 ### define prior distributions

9: psi ~ dunif(0,1)

10: phi[1] <- 1-psi

11: phi[2] <- psi

12: for (jj in 1:5) {

13: p[1, jj, 1] <- 1 # Pr(non-detection|absence)
14: p[1,]j, 2] <-0 # Pr(detection|absence)

15: p[2, jj, 1] <- 1-p[2, jj, 2] # Pr(non-detection|presence)
16: p[2, jj, 2] ~ dunif(0,1) # Pr(detection|presence)
17: }

18: }

There is clearly more book-keeping required, but as we stallater it makes generalising to
other models much easier.

Defining a model with covariates

Including covariates into a model in OpenBUGS can be achiéweelxample, with the
following code using the weta data.

1 model (psi(Browsed)p(Obs)) {

2 for (ii in 1:72) {

3 z[ii] ~ dbern(psilii])

4: z1[ii] <- z[ii]+1

5: for (jj in 1:5) {

6: hii, jj] ~ dbern(p[z1[iil,ii, jj])
7

8
9

define logit-link functions
logit(psilii]) <- a[1] + a[2]*Browsed]ii]

10: for (jj in 1:5) {

11: p[1, ii, j] <- O

12: logit(p[2, i, jj]) <- b[1] + b[2]*Obs1][ii, jj] + b[3FObs2ii, jj]
13: }

14: }

15: #define priors for coefficients
16: a[1] ~ dnorm(0, 0.07)

17: a[2] ~ dnorm(0, 0.07)

18: b[1] ~ dnorm(0, 0.07)

19: b[2] ~ dnorm(0, 0.07)

20: b[3] ~ dnorm(0, 0.07)

21}

The main things to note are that: 1) occupancy and detectibahilities are now indexed by
unit (ii); 2) we make use of the built-in logit function to idefthe respective regression
equations; and 3) prior distributions are now defined on the befficends.

